Transferring Piano Performance Control Across Environments

Authors: Maoran Xu, Ziyu Wang, Gus G. Xia Music X Lab @ NYUShanghai

I will reduce pedaling for the hall with great reverberation!

How do I control my fingers as if the pianist is in my room? Fact:

Motivation:

- Physical Measurements: Sound effect varies across environments (including room effects and piano devices).
- Psychoacoustic studies: Pianists adjust their performance control (force, duration and pedaling) in different environments.
- MIDI Representations of performance controls enable replications of music through Player Pianos.

Aim:

 Given Environment A and piano performance control parameters under A, find an optimal control in Environment B so that performance B sounds like A.

Contributions:

- First method to transfer controls on player pianos to cope with the deviation of environments.
- Provide measurements of performance under different environments and conduct listening test upon them.

Measurement of Performance:

- Measured velocity-intensity effect and note durationaudible duration effect.
- Room acoustics influence both curves.
- The two factors are interactive with each other.
- The pedals of two pianos mostly varies on the effective ranges.

The tone of a fixed piano is only related to

(a) the pitch being played, (b) the endmost

velocity of the key, (c) the duration of the

 $E_i(v_i, d_i) = \left(f_i(v_i, d_i), g_i(v_i, d_i)\right)$

The optimal transferred control is a

 $(v_2^*, d_2^*) = \arg\min_{v \in J} \left\| E_2(v, d) - (I, D) \right\|$

Conduct the iterative coordinate-

1: $I \leftarrow f_1(v_1, d_1), D \leftarrow g_1(v_1, d_1)$

search algorithm until convergence.

 $\begin{array}{l} \mathbf{0}, & \mathbf{0}, \\ v_2^{(k+1)} \leftarrow \arg\min_v |f_2(v, d_2^{(k)}) - I| \\ d_2^{(k+1)} \leftarrow \arg\min_d |g_2(v_2^{(k+1)}, d) - D| \end{array}$

 $\begin{array}{l} \text{o:} \quad a_2 \quad \leftarrow \arg \inf_{|y_2| \in U_2} \quad , a) - D| \\ \text{7:} \quad \text{while} \quad v_2^{(k+1)} - v_2^{(k)} > \delta_v \text{ and } d_2^{(k+1)} - d_2^{(k)} > \delta_d \\ \text{8:} \quad (v_2^*, d_2^*) \leftarrow (v_2^{(k+1)}, d_2^{(k+1)}) \end{array}$

 $= (I_i, D_i), \text{ for } i = 1, 2.$

 $= \underset{v,d}{\operatorname{arg\,min}} \left| \left| \left(f_2(v,d) - I, g_2(v,d) - D \right) \right| \right|.$

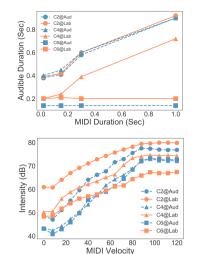
Algorithm 1 Calculate v_2^* and d_2^* when v_1 and d_1 is played

on the source piano with pitch p and onset o, without sustain

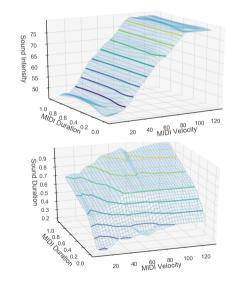
note, and (d) the use of sustain pedal.

Transfer Method (PETA):

Define environmental effect


functions

minimizer as

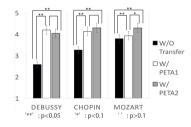

pedal (s = 0).

2: $v_2^{(0)} \leftarrow v_1$ 3: $d_2^{(0)} \leftarrow d_1$

4: do:



Representing Performance Controls					
Name	Pitch	Velcocity	Onset	Duration	Sustain Pedal
Notation	р	v	0	d	S
Value	0, 1,, 88	0, 1,, 127	Sec	Sec	0, 1,, 127


Experiments:

- Implemented PETA on Mozart's sonata, Debussy's etudes and Chopin's etudes.
- Conducted a listening test with 20 music players.

Results:

- Transferring velocity and duration has significant listening enhancement.
- Listeners could not quite tell the difference between the effect of a sustain pedal and a hold-on note.

Future Works:

- We are currently moving on to explore the pedal transfer methods.
- Online learning can be applied to this algorithm and embedded in MIDI softwares connected to player pianos.

Download **Poster:**

